Journal of Organometallic Chemistry, 160 (1978) 67–73 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

KOORDINATION DES CYCLOOCTATETRAENID-DIANIONS AM TRICYCLOPENTADIENYL-URAN(IV)-SYSTEM: EIN BEISPIEL FÜR "HYPERLABILE" (C_5H_5)₃UX-KOMPLEXE *

G.R. SIENEL, A.W. SPIEGL und R.D. FISCHER **

Institute für Anorganische Chemie der Universität Erlangen-Nürnberg und für Anorganische und Angewandte Chemie der Universität Hamburg (B.R.D.)

(Eingegangen den 22. Mai 1978)

Summary

Reaction of tris(cyclopentadienyl)chlorouranium(IV) with dipotassium cyclooctatetraenide at -30° C yields the novel, halide-free $(C_5H_5)_3$ UX-system $\{[(C_5H_5)_3U]_2C_8H_8\}$ which appears to be the first actinide complex with both C_5H_5 - and C_8H_8 -ligands. Both steric arguments and PMR spectra preclude a η^8 - C_8H_8 -coordination. The complex is the least stable $(C_5H_5)_3$ UX-system so far described in that coordinated C_8H_8 can be pumped off around 0°C.

Zusammenfassung

Die Umsetzung von Tricyclopentadienyl-chloro-uran(IV) mit Dikalium-cyclooctatetraenid bei -30° C führt zu dem neuartigen, halogenfreien $(C_5H_5)_3$ UX-System {[$(C_5H_5)_3$ U] $_2$ C $_8$ H $_8$ }, dem wohl ersten Actinidenkomplex mit C $_5$ H $_5$ - und C $_8$ H $_8$ -Liganden. Sowohl sterische Argumente als auch die ¹H-NMR-Spektren schliessen eine η^8 -Koordination von C $_8$ H $_8$ aus. Der Komplex stellt den labilsten bislang beschriebenen Vertreter der (C $_5$ H $_5$) $_3$ UX-Reihe dar: bereits bei 0°C lässt sich das gebundene C $_8$ H $_8$ am HV wieder entfernen.

Während über die geglückte Darstellung von Lanthanidenkomplexen der Zusammensetzung $(C_5H_5)Ln^{III}(C_8H_8)B$ (Ln = Y, Nd, Sm, Ho, Er [1] und Dy [2]; B = Tetrahydrofuran, Pyridin, Cyclohexylisonitril und Ammoniak) erstmals 1974 berichtet wurde, fehlt bis heute noch jeglicher Hinweis auf die Existenz-

^{*} Herrn Professor Ernst Otto Fischer zu seinem 60. Geburtstag am 10. November 1978 gewidmet.

^{**} Korrespondenzen und Sonderdrucke bitte an: Prof. Dr. R.D. Fischer, Institut f
ür Anorganische und Angewandte Chemie der Universit
ät Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.).

fähigkeit von Actiniden-Organylen mit den cyclischen (4n + 2)- π -Elektronensystemen C₅H₅⁻ und C₈H₈²⁻ als gemeinsamen Liganden [3].

Seitdem Kanellakopulos et al. das ursprünglich als Dicyclopentadienyl-uran-(IV)-Komplex formulierte System " $(C_5H_5)_2UCl_2 \cdot DME$ " [4] in kristalliner Form als das Addukt $2(\eta^5 \cdot C_5H_5)_3UCl \cdot UCl_4 \cdot 3$ DME identifiziert und darüber hinaus das verwandte Addukt $(\eta^5 \cdot C_5H_5)_3UCl \cdot UCl_4$ beschrieben haben [5a] * (DME = 1,2-Dimethoxyethan), bietet sich zur Erschliessung gemischt-koordinierter Uran(IV)-Verbindungen vor allem der als " $C_5H_5UCl_3 \cdot DME$ " beschriebene Komplex [6] an. Zumindest das kristalline Derivat $(\eta^5 \cdot C_5H_4CH_3)UCl_3 \cdot$ 2 THF ist ganz im Sinne dieser Bruttoformel (quasi-oktaedrisch) gebaut [7].

Während Bagnall et al. das THF-Addukt $C_5H_5UCl_3 \cdot 2$ THF mittels K(HBPz_3) (HBPz_3 = tris(pyrazolyl)borat) in das System (η^5 - C_5H_5)U(η^3 -HBPz_3)Cl_2 überführen konnten [8], erhielten wir bei der Umsetzung von $C_5H_5UCl_3 \cdot 2$ THF mit K₂[C_8H_8] bzw. dessen Derivat K₂[$C_8H_7Si(CH_3)_3$] hauptsächlich Uranocen, (η^8 - C_8H_8)₂U **, bzw. das 1,1'-disilylierte Uranocen [9].

Als Rückstand blieb bei der Aufarbeitung in beiden Fällen eine graubraune, stark pyrophore Substanz von noch unbekannter Zusammensetzung zurück.

Angesichts der Möglichkeit, dass das System "C₅H₅UCl₃" in Lösung wieder mit $(C_5H_5)_3$ UCl und UCl₄ im Gleichgewicht stehen könnte [7] (z.B.: 3 C_5H_5 - $UCl_3 \stackrel{\circ}{=} (C_5H_5)_3UCl \cdot 2 UCl_4$, untersuchten wir auch die Reaktion von reinem $(C_5H_5)_3$ UCl mit $K_2[C_8H_8]$. In der Tat tritt in THF bereits bei -30° C unter deutlicher Farbvertiefung und KCl-Abscheidung eine Reaktion ein. Das nach der Aufarbeitung als dunkelrotes Pulver isolierbare und in THF, Ether sowie auch Toluol wieder gut lösliche Produkt I ist extrem luftempfindlich und völlig Chlorid-frei. Die mittlere analytische Zusammensetzung ergibt sich zu $(CH)_{19\pm 2} U \cong [(C_5H_5)_3 U]_2(C_8H_8)$. Völlig reproduzierbare Analysenwerte liessen sich nicht erhalten, da I am Hochvakuum schon ab 0°C innerhalb weniger Minuten (bzw. beim Aufbewahren unter N_2 -Überdruck im Verlauf weniger Tage) merkliche Mengen an zuvor gebundenem C₈H₈ abgibt. Nach dem erschöpfenden Abpumpen des C_8H_8 (am HV bei ca. 100°C) bleibt ein bronzefarbenes, wiederum luftempfindliches und bei 150°C nur in Spuren sublimierendes Uran-Organyl (II) zurück, das jedoch mit dem bereits beschriebenen Komplex $(C_5H_5)_3U^{III}$ [10] nicht identisch ist. So liess sich nach Zugabe von Nicotin (= nic) zu Lösungen von II auch nicht das leicht identifizierbare 1/1-Addukt (C_5H_5)₃ U^{III} (nic) [10] erhalten. Die NIR/VIS-Spektren (3000–16000 cm⁻¹) sprechen vielmehr für das Vorliegen von Uran(IV) mit der Grundkonfiguration $[Rn]5f^2$ in I und II. Mit UCl₄ setzt sich I in THF nicht zu $(C_8H_8)_2$ U und $(C_5H_5)_3$ UCl um. Dieser Befund überrascht angesichts der bekanntlich hohen Bildungstendenz von Uranocen (z.B. auch aus Cyclooctatetraen(id)-Komplexen des Zr und Hf mit UCl₄ [11]) und deutet möglicherweise an, dass in I nicht mehr das symmetrische C_8H_8 -Dianion vorgebildet ist.

Im Massenspektrum von I fehlen praktisch sämtliche für $(C_8H_8)_2U$ [9,12] bzw. $(C_5H_5)_3UCl$ [13] spezifischen Fragmente. Stattdessen finden sich neben den deutlich ausgeprägten, für $(C_5H_5)_3UR$ -Systeme mit einer labilen U–C- σ -

^{*} Unter gewissen Bedingungen scheint allerdings auch das Gleichgewicht: $2(C_5H_5)_2UCl_2 \approx C_5H_5UCl_3 + (C_5H_5)_3UCl vorzuliegen [5b].$

^{**} Uranocen bildet sich gleichfalls bevorzugt aus dem Anion [U(C₂H₉H₁₁)₂Cl₂]²⁻, siehe Ref. 3; vgl. hierzu auch Ref. 11.

TABELLE 1

T (K)	$\Delta^{\rm iso}~(I_{\rm rel}\approx7)$	$\Delta^{\rm iso} (I_{\rm rel} \approx 1)$	
335	10.1	23.0	
323	10.2	23.7	
299	10.6	25.0	
282	11.2	27.5	
262	11.8	30.0	
243	12.5	33.0	
223	13.4	37.0	
203	14.6	42.3	
183	15.9	46.7	

TEMPERATURABHÄNGIGKEIT DER "PARAMAGNETISCH VERSCHOBENEN" ¹ H-NMR-SIGNALE VON I (Solvens: Toluol- d_8 , Referenzsignal: C_6H_6)

Bindung charakteristischen Peaks [14,15] bei m/e 433, 368 und 303 (d.h.: $(C_5H_5)_3U^+$, $(C_5H_5)_2U^+$ und $C_5H_5U^+$) noch einige wesentlich schwächere Signale bei m/e 888, 820, 758, 689, 623, 563 und 514, die möglicherweise dem Bruchstück $(C_5H_5)_6U_2C_2H_2^+$ und den sechs von ihm ableitbaren Fragmenten $(C_5H_5)_n$ - $U_2C_2H_2^+$ mit n = 5 bis 0 zuzuschreiben sind *. Der untere Teil des Spektrums ist mit dem des freien C_8H_8 identisch.

Im ¹H-NMR-Spektrum (THF- d_8 bzw. C_6D_6) von I sind zwischen +62 und -90°C nur zwei "paramagnetisch verschobene" Signale mit temperaturabhängiger Lage (Tab. 1) erkennbar; ihr Intensitätsverhältnis (ca. 7/1) spricht (bei Annahme der Zusammensetzung $[(C_5H_5)_3U]_2C_8H_8$) allerdings gegen das Vorliegen von acht äquivalenten C_8H_8 -Protonen wie auch gegen eine, z.B. bei strenger η^3 -Koordination zu erwartende [18], Ausbildung nicht äquivalenter η^5 - C_5H_5 -Liganden. Die isotrope Verschiebung des intensiveren Signals weist etwa die gleiche Temperaturcharakteristik wie das C_5H_5 -Protonensignal von $(C_5H_5)_3$ U-Alkylsystemen [15] auf, während die des schwächeren Signals mit der Verschiebung des Methin-Protons von $(C_5H_5)_3$ UC₃H₅ [15] korrelierbar ist.

Das IR-Spektrum rasch präparierter und umgehend untersuchter fester Proben (KBr-Pressling) von I enthält zwischen 1200 und 1800 cm⁻¹ zwei relativ breite Banden (1570 und 1369 cm⁻¹), die beide die im $(C_5H_5)_3$ UCl-Spektrum dominierende Absorption bei 1440 cm⁻¹ an Intensität deutlich übertreffen (Fig. 1). Schon ca. 30 Minuten nach der Probenbereitung sinkt die Intensität der Hauptbande (1570 cm⁻¹) merklich zugunsten derjenigen zweier neuer Banden (1440 und 1260 cm⁻¹) ab. Zugleich wird noch ein Signal bei 1642 cm⁻¹ erkennbar, dessen Lage der der olefinischen C—C-Schwingungsbande des freien C₈H₈ (1638 cm⁻¹) entspricht. Separat dargestellte Proben des Produkts II liefern wieder im wesentlichen das gleiche IR-Spektrum wie $(C_5H_5)_3$ UCl.

Während weder das salzartige K₂[C₈H₈], noch die bislang bekannten Metallorganyle mit η^8 -koordinierten C₈H₈-Liganden eine ähnlich intensive Absorption wie I bei 1570 ± 10 cm⁻¹ aufweisen, zeigen die von uns näher untersuchten Komplexe (C₈H₈)Ln^{III}(C₅H₅) · n THF (Ln = Dy und Ho; n = 1,2) [2] überraschen-

^{*} Angesichts der im Fall m/e > 500 zunehmenden Ungenauigkeit der digitalen Massenanzeige des Spektrometers (Varian MAT CH-5) um bis zu ±3 Masseneinheiten waren hier noch keine eindeutigen Zuordnungen möglich.

1703

1621

1781 1750 122 1638 1730 1800 1600 1400 (cm⁻¹) Fig. 1. Ausschnitte aus den IR-Spektren (1200-1800 cm⁻¹; KBr-Presslinge) von A, (C5H5)3UCl; B, dem "frisch vermessenen" Komplex I; C, ca. 30 Minuten "gealtertem" I; D, Komplex II und E, reinem C8H8 (Kaj dlarfilm).

1265

1262

26

270

1360

14 00

derweise ebenfalls eine starke IR-Absorption zwischen 1585 und 1595 cm⁻¹. Das IR-Spektrum des Komplexes $(C_8H_8)_3Ce_2$ [16] mit vermutlich einem μ -C₈H₈-Liganden (analog wie im ähnlich zusammengesetzten Nd-Komplex [17]) weist indessen keine Ähnlichkeit mit dem Spektrum von I auf.

Fasst man den $C_8H_8^{2-}$ -Liganden in Komplex I als ein Diallylsystem auf, so liegt ein Vergleich der Bande bei 1570 cm⁻¹ mit der sehr variationsfähigen $\nu(CC)$ -Absorption [20,21] verschiedener anderer Metall-Allyl-Komplexe nahe

Fig. 2. Schematischer Strukturvorschlag für Komplex I bei 1,4-Ringmetallierung (2 nichtäquivalente Valenzisomere ohne Berücksichtigung der cis, trans-Isomerie). Gestrichelte Linien sollen Möglichkeiten der Delokalisierung bindender (CC) π - und (UC) σ -Elektronenpaare andeuten.

TABELLE 2

Komplex	ν (CC) (cm ⁻¹)	Natur der M—Allyl-Bindung	Ref.
Cp ₂ Ta(2-CH ₃ C ₃ H ₄)	1440	}	22
$Cp_2Ti(2-CH_3C_3H_4)$	1480 1509		2 2
$Cp_2Ti(C_3H_5)$			21
$Zr(C_3H_5)_4$	1515		21
$Cp_2Nb(C_8H_9)$	1540		18
U(C3H5)4	1550m-s, 1500ss		23
(Cp ₃ U) ₂ C ₈ H ₈ (I)	1570s, 1460 ^a	,	diese Arb.
$Mg(C_3H_5)_2$	1575	1	21
$Cp_3U(2-CH_3C_3H_4)$	1580s, 1493ss		24
Cp ₂ V(C ₃ H ₅)	1588	ь	21
$Zn(C_3H_5)_2$	1605	η^1 -Koord.	21
$Cp_2Ti(C_8H_9)$	1620		18
$Cp_3U(C_3H_5)$	1630w, 1588m-s	Ь	15
$Cp_3Th(C_3H_5)$	(1650 ^c), 1584s) b	19

VARIATIONSMÖGLICHKEITEN DER ν (CC)-SCHWINGUNGSFREQUENZ IN VERSCHIEDENEN METALL-ALLYL-KOMPLEXEN

^a Schwache Schulter. ^b In Lösung fluktuierend. ^c Nur im Raman-Spektrum beobachtet.

(Tab. 2). Angesichts der Placierung von I in Tab. 2, sowie auch des sehr kleinen Energieunterschiedes zwischen η^1 - und η^3 -koordiniertem Allyl in Actinidenverbindungen [15,19], erscheint auch in I eine η^1 -Koordination denkbar, bei der allerdings wesentlich schwächere weitere U—C-Wechselwirkungen nicht voll auszuschliessen sind.

Im Hinblick auf die schon sterisch hier nicht verifizierbare η^8 -Koordination dürften daher die in Fig. 2 schematisch wiedergegebenen Strukturen mit 1,4dimetalliertem C₈H₈ am ehesten zu diskutieren sein. Entsprechende Systeme mit 1,3- und auch 1,5-Dimetallierung sind wegen der Ausbildung ungepaarter Elektronen an den C-Atomen 2 und 6 weniger wahrscheinlich. Obwohl gerade in letzter Zeit wieder mehrere ungewöhnliche Strukturen von *d*-Metall-Zweikernsystemen mit einer verbrückenden C₈H₈-Einheit beschrieben worden sind [25], scheint uns keines der derzeit bekannten μ -C₈H₈-Systeme mit *d*- oder *f*-Elementen [16,17] ein geeignetes strukturelles Vorbild für I zu sein.

Die ungewöhnlich leichte Abgabe des Liganden C_8H_8 von I * erinnert im übrigen an ähnlich bereitwillig verlaufende Abspaltungen von X = Mn(CO)₅ bzw. Co(CO)₄ (in letztlich dimerisierter Form) aus den entsprechenden, kürzlich von uns erhaltenen (C_5H_5)₃UX-Systemen [26]. Auch das hierbei zurückbleibende Uran-Organyl enthält kein Uran(III). Der Zerfallsmechanismus der Systeme unterscheidet sich somit deutlich von dem der Alkylkomplexe (C_5H_5)₃UR, der sich gerade durch den Zusammenschluss eines Ring-H-Atoms mit dem Liganden R auszeichnet [15]. Die leichte Umwandlung I \rightarrow II erscheint uns besonders im Hinblick auf die, bislang noch nicht erfolgreiche, Suche nach dem Uran-Homologen der von Marks et al. beschriebenen Verbindung [(η^5 - C_5H_5)₂(η^5 : η^1 - C_5H_4)Th]₂ [19,27] von Interesse. Als neuer Vertreter

Nicht auszuschliessen, aber zum gegenwärtigen Zeitpunkt noch nicht voll abgesichert, ist die gleichzeitige Abgabe von elementarem Wasserstoff und/oder auch partiell hydriertem Cyclooctatetraen.

der Komplexreihe $(C_5H_5)_3UX$ mit $X = (C_8H_8)/2$ stellt I das derzeit labilste Glied und damit das Gegenstück zu dem kürzlich von uns beschriebenen, polymeren $\{(C_5H_5)_3UC(CN)_3\}_{\infty}$ [28] dar. Unsere Untersuchungen über "hyperlabile Cp₃UX-Systeme" sowie zur Natur des Produkts II werden fortgesetzt.

Experimentelles

0.149 g (3.8 mmol) Kaliumgranulat werden in 5 ml THF mit 0.23 ml (1.9 mmol) C_8H_8 solange bei -40°C gerührt, bis sämtliches Kalium in Lösung gegangen ist [11]. Nach Zugabe einer Lösung von 1.785 g (3.8 mmol) $(C_5H_5)_3$ -UCl in 50 ml THF erwärmt man langsam auf -30°C und lässt die Reaktionsmischung insgesamt 12 Std. rühren. Man dekantiert und filtriert die dunkelrotbraune Lösung vom entstandenen KCl bei -30°C unter N₂-Druck ab und entfernt das Lösungsmittel vorsichtig bei -10°C am Ölpumpenvakuum. Nach dem Waschen des Rohprodukts mit wenig kaltem Toluol kristallisiert man die Substanz bei -20°C aus Diethylether um. I: Analysen: Gef.: C, 46.97-35.43; H, 4.73-2.72. $C_{38}H_{38}U_2$ (970) ber.: C, 47.0; H, 3.92% *. Das beim Übergang von I in II zurückgebildete C_8H_8 wurde in einer Kühlfalle gesammelt und gaschromatographisch sowie massenspektrometrisch identifiziert.

Umsetzung von $C_5H_5UCl_3$ mit $K_2C_8H_8$ bzw. $K_2C_8H_7Si(CH_3)_3$: Das Addukt $C_5H_5UCl_3 \cdot 2$ THF wurde nach Bagnall et al. aus TlC₅H₅ und UCl₄ in THF dargestellt [8]. Zu einer Lösung von 3 mmol C_8H_7R (R = H bzw. Si(CH₃)₃) in 20 ml THF werden unter Rühren bei -80°C 5.8 mmol granuliertes K gegeben. Sobald dieses verbraucht ist, werden 5.6 mmol $C_5H_5UCl_3$, gelöst in 20 ml THF, bei -65°C langsam zugetropft. Die Lösung wird 12 Std. lang weiter gerührt, wobei sie sich auf Raumtemperatur erwärmt.

Weitere Aufarbeitung im Fall R = H: Der entstandene feinkristalline grüne Niederschlag wird abfiltriert, mit wenig H₂O gewaschen und als (C₈H₈)₂U identifiziert. Nach Abzug des Lösungsmittels vom Filtrat wird der schwarze pyrophore Rückstand mit n-Pentan und Diethylether extrahiert. Hierbei liess sich jedoch kein einheitliches, uranhaltiges Produkt isolieren.

 $R = Si(CH_3)_3$: Das Lösungsmittel wird sofort abgezogen, und der Rückstand mit n-Pentan extrahiert. Im Extraktionskolben setzt sich allmählich ein grünes, feinkristallines und luftempfindliches Pulver ab, das eindeutig als U[C₈H₇Si-(CH₃)₃]₂ identifiziert werden kann. Analyse: Gef.: C, 44.2; H, 5.5; U, 39.1. C₂₂H₃₂Si₂U₂ (590) ber.: C, 44.7; H, 5.4; U, 40.3%. Ausbeute (bez. auf K): 15%.

Die Aufnahme der Schwingungs-IR-Spektren erfolgte mit dem Modell IR 12 von Beckman, die der NIR/VIS-Elektronenspektren mit dem Beckman-Spektralpnotometer DK-2A. ¹H-NMR-Spektren wurden mit dem Spektrometer JNM-C-60 von Jeol (ausgerüstet mit einer Jeol-Temperiereinheit), und Massenspektren mit dem Varian-Modell CH-5 aufgenommen.

Dank

Wir danken Herrn Dr. P. Merbach (Erlangen) für die Aufnahme der Massenspektren und Prof. T.J. Marks (Evanston) sowie Prof. B. Kanellakopulos

^{*} Die Ausbildung eines auch denkbaren Cyclooctatrienyl-Komplexes $(C_5H_5)_3UC_8H_9 = C_{23}H_{24}U$ (vgl. hierzu auch Ref. 18) ist somit auszuschliessen.

(Karlsruhe) für wertvolle Diskussionen. Dem Fonds der Chemie und der Deutschen Forschungsgemeinschaft danken wir für die grosszügige materielle Unterstützung unserer Arbeit.

Literatur

- 1 J.D. Jamerson, A.P. Masino und J. Takats, J. Organometal. Chem., 65 (1974) C33.
- 2 R.D. Fischer und A. Spiegl, unveröffentlichte Ergebnisse; siehe: A. Spiegl, Diplomarbeit, Universität Erlangen-Nürnberg, 1973.
- 3 Vgl. hierzu: F.R. Fronczek, G.W. Halstead und K.N. Raymond, J. Amer. Chem. Soc., 99 (1977) 1769.
- 4 P. Zanella, S. Faleschini, L. Doretti und G. Faraglia, J. Organometal. Chem., 26 (1971) 353.
- 5 (a) B. Kanellakopulos, C. Aderhold und E. Dornberger, J. Organometal. Chem., 66 (1974) 447: (b) T.J. Marks, persönliche Mitteilung.
- 6 L. Doretti, P. Zanella, G. Faraglia und S. Faleschini, J. Organometal. Chem., 43 (1972) 339.
- 7 T.J. Marks, J. Organometal. Chem., 138 (1977) 157, loc. cit. Ref. 33.
- 8 K.W. Bagnall und J. Edwards, J. Organometal. Chem., 80 (1974) C14.
- 9 A.W. Spiegl und R.D. Fischer, Publikation in Vorbereitung.
- 10 B. Kanellakopulos, E.O. Fischer, E. Dornberger und F. Baumgärtner, J. Organometal. Chem., 24 (1970) 507.
- 11 A. Streitwieser, U. Müller-Westerhoff, G. Sonnichsen, F. Mares, D.G. Morrell, K.O. Hodgson und C.A. Harmon, J. Amer. Chem. Soc., 95 (1973) 8644.
- 12 J.L. Franklin und S.R. Carnelle, J. Amer. Chem. Soc., 91 (1969) 5940.
- 13 M.L. Anderson und L.R. Crisler, J. Organometal. Chem., 17 (1969) 345.
- G. Brandi, M. Brunelli, G. Lugli und A. Mazzei, Inorg. Chim. Acta, 7 (1973) 319; vgl. auch
 F. Calderazzo, Pure Appl. Chem., 33 (1973) 453; M. Tsutsui und N. Ely, J. Amer. Chem. Soc.,
 96 (1974) 3650.
- 15 T.J. Marks, A.M. Seyam und J.R. Kolb, J. Amer. Chem. Soc., 95 (1973) 5529.
- 16 A. Greco, S. Cesca und G. Bertolini, J. Organometal. Chem., 113 (1976) 321.
- 17 S.R. Ely, T.E. Hopkins und C.W. DeKock, J. Amer. Chem. Soc., 98 (1976) 1624.
- 18 A. Westerhof und H.J. de Liefde Meijer, J. Organometal. Chem., 139 (1977) 71.
- 19 T.J. Marks und W.A. Wachter, J. Amer. Chem. Soc., 98 (1976) 703.
- 20 H.A. Martin und F. Jellinek, J. Organometal. Chem., 12 (1968) 149.
- 21 H.A. Martin, P.J. Lemaire und F. Jellinek, J. Organometal. Chem., 14 (1968) 149 und dort zitierte Lit.; hinsichtlich alternativer Zuordnungsmöglichkeiten vgl. K. Shobatake und K. Nakamoto, J. Amer. Chem. Soc., 92 (1970) 3339.
- 22 A. van Baalen, C.J. Groenenboom und H.J. de Liefde Meijer, J. Organometal. Chem., 74 (1974) 245.
- 23 G. Lugli, W. Marconi, A. Mazzei, N. Paladino und U. Pedretto, Inorg. Chim. Acta, 3 (1969) 253.
- 24 G.W. Halstead, E.C. Baker und K.N. Raymond, J. Amer. Chem. Soc., 97 (1975) 3049.
- 25 Vgl. hierzu z.B. R. Goddards, S.A.R. Knox, F.G.A. Stone, M.J. Winter und P. Woodward, Chem. Commun., (1976) 559; D.C. Brauer und C. Krüger, Inorg. Chem., 15 (1976) 2511, sowie weitere dort aufgeführte Literatur; S.P. Kolesnikov, J.E. Dobson und P.S. Skell, J. Amer. Chem. Soc., 100 (1978) 999; D.C. Brauer und C. Krüger, J. Organometal. Chem., 122 (1976) 265.
- 26 G.R. Sienel, Dissertation, Universität Erlangen-Nürnberg, 1976.
- 27 E.C. Baker, K.N. Raymond, T.J. Marks und W.A. Wachter, J. Amer. Chem. Soc., 96 (1974) 7586.
- 28 R.D. Fischer und G.R. Sienel, Z. Anorg. Allg. Chem., 419 (1976) 126.